Generating Families in a Topos

نویسنده

  • TOBY KENNEY
چکیده

A generating family in a category C is a collection of objects {Ai|i ∈ I} such that if for any subobject Y // m //X, every Ai f //X factors through m, then m is an isomorphism – i.e. the functors C(Ai, ) are collectively conservative. In this paper, we examine some circumstances under which subobjects of 1 form a generating family. Objects for which subobjects of 1 do form a generating family are called partially well-pointed. For a Grothendieck topos, it is well known that subobjects of 1 form a generating family if and only if the topos is localic. For the elementary case, little more is known. The problem is studied in [1], where it is shown that the result is internally true, an equivalent condition is found in the boolean case, and certain preservation properties are shown. We look at two different approaches to the problem, one based on a generalization of projectivity, and the other based on looking at the most extreme sorts of counterexamples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymorphic Linear Logic and Topos Models

We give a deenition of a \linear bration", which is a hyperdoctrine model of polymorphic linear logic, and show how to internalise the bration, generating topos models. This gives a constructive set theoretical context for the logic of Petri nets, as recently developed by N. Mart-Oliet and J. Meseguer. Also, we sketch how this can be further extended to include the exponential operator !. In th...

متن کامل

A New Method for Generating Continuous Bivariate Distribution Families

Recently, it has been observed that a new method for generating continuous distributions, T - X family, can be quite effectively used to analyze the data in one dimension. The aim of this study is to generalize this method to two dimensional space so that the marginals would have T - X distributions. So, several examples and properties of this family have been presented. As ...

متن کامل

THE INTERNAL IDEAL LATTICE IN THE TOPOS OF M-SETS

We believe that the study of the notions of universal algebra modelled in an arbitarry topos rather than in the category of sets provides a deeper understanding of the real features of the algebraic notions. [2], [3], [4], [S], [6], [7], [13], [14] are some examples of this approach. The lattice Id(L) of ideals of a lattice L (in the category of sets) is an important ingredient of the categ...

متن کامل

Some aspects of cosheaves on diffeological spaces

We define a notion of cosheaves on diffeological spaces by cosheaves on the site of plots. This provides a framework to describe diffeological objects such as internal tangent bundles, the Poincar'{e} groupoids, and furthermore, homology theories such as cubic homology in diffeology by the language of cosheaves. We show that every cosheaf on a diffeological space induces a cosheaf in terms of t...

متن کامل

Finite Dimensional Generating Spaces of Quasi-Norm Family

In this paper,~some results on finite dimensional generating spaces of quasi-norm family are established.~The idea of equivalent quasi-norm families is introduced.~Riesz lemma is established in this space.~Finally,~we re-define B-S fuzzy norm and prove that it induces a generating space of quasi-norm family.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006